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ABSTRACT

A water wave model was presented by tidal waveigladifferential equations in the form of two-dinsgon,
nondimensionalization, and matrix. Numerical sintigla of water wave adopted Chebyshev spectral ndetholve the
partial differential equations. As an examplpropagation of a water wave in a square pool dueatwater column
perturbation was simulated. The simulation resgtees with wave diffusion rule and numerically fied by the same
amount of water in the pool. The result showed thatChebyshev spectral method is concise and atxim numerical

simulation of water wave.
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INTRODUCTION

Numerical simulation provides an effective meansstady water wave morphology. Having a detailed
understanding of water wave is significant when sidering some ocean problems[1-3]. The tidal wagea&ons
characterize the motion of water waves in the ffid by expressing the velocity of water flow atige height of the
water level. The Lagrangian method [4, 5] and thieEmethod [6] are the two methods constructing tidal wave
equations based on fluid mechanics. The idea of #tggangian method is to descript the movementaofigles. That is,
based on the study of the motion process of aesifigid particle, the motion of all the particlesintegrated to constitute
the movement of the entire fluid. The Euler metistutlies fixed spatial points. By observing the g®anf the moving
elements over time at each fixed space point irfldve space, the movement of the entire fluid isagted by combining

enough spatial points. The tidal wave equatiorsbdished by the Euler method is studied in thisgpap

In the Cartesian coordinate system, the two-dinwgradi water wave equations are obtained by the oarti
integral of the three-dimensional water wave equis{i7, 8]. As partial differential terms of timedaspace is contained in
water wave equations, it is difficult to obtain amalytical solution. Therefore, numerical soluti@me needed by choosing
a numerical calculation method. Spectral methoahis of three tools for solving partial differentejuations, along with
the difference method and the finite element mg®dd]. The application of spectral methods is rhain the fields of
solving non-linear heat conduction equation andifrmechanics equation, predicting numerical weaghediction and so
on[12]. In recent years, the spectral method has likeveloped mainly in two directions. The mathécahtresearch
focuses on the methodology and the solution ofouaripartial differential equations and its conveme([13]), while the

physical research is mainly to solve various phalgicoblems by using a spectral method based ondtaar Chebyshev
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polynomial as the basis function[14, 15]. The adages of the spectral method are its infinite orclamvergence and
conveniently applied the fast Fourier transfer[B§-1
In this paper, the Chebyshev spectral method id tessolve two-dimensional water wave equations @btdin a

numerical simulation of a water wave in a squarelpdhe result can provide a reference for the migaksolution of

water wave eq uations.

Water Wave Model
The water wave equations give the velocity of wat@we motion and the height of the water level. Two

dimensional water wave equations and its boundamnditions in the Cartesian coordinated system fl&sving[8],

6,0 9 -
at"'ax[(f*‘h)u]*‘ay[(f*‘h\} 0 4 =0
[ nf _
@+u%+va—u+g£—v+ | \;:O, 65 B (1)
ot ox dy OxX (é+h¢é Fh =0
oo v o WV
o ox 9y ~ox (é+hé

whereu andv represent respectively the average flow velocitthe water current in the andy-direction,t the

time variableh the average water depththe water levelg the gravitational acceleration, the roughness coefficient or

chezy coefficient ¢, = (h+&)“®/ n, nthe Manning coefficient which value is taken as08)0

For the convenience of calculation, all the vaeabbf Eq. 1 have been nondimensionalized[8]. Arictha

variables can be restored to standard dimensions by

g=gXfs, ©=¢ X?f, =1 x xX, )
y=yX, ¢&=¢&x, h=hX, = uxt, & vXt

whereX is the normalized lengtti.the Coriolis coefficient f = 2cwSing, o is the Earth's rotation rategis

latitude).

Chebyshev Spectral Method
The Chebyshev spectral method is used to solvephtal partial differential term in Eq. 1. The daimof the
Chebyshev polynomial is a square region[ofl,1]x[—1,1], which is divided byNxN small regions by non-equal

intervals. The mesh nodes in the regions are takehe Chebyshev points, stated as follows[19]:
X. :cosﬁ), j=0,1 ..N
J 'N ©)
Y, :cos%), i=0,1 ..N

wherei andj is the index of the Chebyshev points alongndy-axis, respectively. Then Chebyshev points are
used to construct Chebyshev differentiation matfier each M1, The Chebyshev differential matriX, can be shown

Impact Factor (JCC): 5.0273 NAAS Rating 3.73



Numerical Simulation of Water Wave Based on Chebyshev Spectral Method 155

below
Table 1
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Thus, the first-order partial differential matiix andD, can be expressed as

{DXiDNDI )
D,=10D,

WhereDy, is the Chebyshev differential matri®, the Kronecker product,the identity matrix. Defining that is
an N+1 order matrix composed of function values on thesimnodes, the first-order partial derivatives hef spatial

variables ovek andy can be expressed as:

{ng ooy (6)
V, =D, *V

y

WhereV in the calculation is taken as a column shépg It means in all the matrix multiplication réga toDy,

D,, Dy, Matrix variableV should be converted to column shape in the follgwiry:

V= : : = )
VNl VNN
T
V() =[Vy oo Vg oo Vi o Vi

To numerically solve Eq. 1, the partial differehttarm over variablex andy is given by the Chebyshev
differential matrix according to Eq. 6, while tharpal differential term of the time variabteis given by a leapfrog

formula. Thus, the numerical solution of Eq. 1hie follows:

£n+1 = an - Ath[(én + h) |]"Ia] - AtD)[( €n+ b Dll
U, = U, +Atv, —Atg( D£,.,) 8
Vo =V, —Atu, —Atg DS )

where¢,.; is the water level at+1 time sequencey,.; andv,.; the wave velocity in direction of andy-axis,
respectively. These three variables are matrix@é+df order and get from,, v,, and&, atn time sequence. The andv, is

auxiliary speed stated by
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ua = un _At[unm Dxun) + Vnm Dyul) + Cf%]
n (9)

Va = Vn _Al{unl:q var*) + Vnm Dyvr) + Cfg\%]

Numerical Experiment

By using the Chebyshev spectral method to solvedineensional water wave equations, water wave chhgea
water column perturbation in a uniform depth squarel was simulated. In the simulation, assumirgggfuare wall and
the bottom surface of the square pool are smodittfanratio of depth to length of the pool is ldsn 1/1000, where the
water depth is taken as 3.8 m and the side lesgtB00m. Chebyshev mesh node takes 32x32 At the initiahemd t = O,

the water column perturbation is close to the coofethe pool and has a height of 0.6 m. The tineg $or numerical

calculation Atis 0.5 s. The calculation accuracy is”1, that is when the mean value of the water |elifiérence
calculated twice before and after each grid pairiéss than I0m, it is considered that the water wave in thel peds to

be stable and the calculation is stopped.

The duration of the simulation process continue.9® hours, the fluctuation of water in the poaids to be

stable. The water level at each grid point is alrtioss same, and the velocity vector is approxinyatelo.

Fig. 1(a) and Fig. 2(a) show the initial state fioe simulation, where the water flow velocity is@eand the
perturbation water column is 0.6 m high near theeo Fig. 1(b) and Fig. 2(b) shows the perturbati@ter column falls
and the water spreads in the pool at t =s8Brom the diagram of the velocity vector in Figb)l it can be seen that the
water velocity vector is evenly arranged in a @rétig. 1(c) and Fig. 2(c) shows the superimpasitibthe forward wave
and the reflected echo wave in the pool when thieugmation water column falls for 545 s, and theerlation of water
waves with peaks and troughs. From Figs. 1-2 ritmseen that the water column perturbation géeseveater waves and
water wave spreads around under the action of tgravi the propagation, water waves hit the waltl actho waves
formed. The echo wave is superimposed on the farwaave, and the both cancel each other out. Aftetemvwave
collides with the wall several times, the waterface of the pool calmed down. The simulation reshbitsically conform to

the physical law of water wave motion.

In order to obtain quantitative verification of thienulated results, the initial value of the averagter level rise
caused by the water column perturbation and theitad value is calculated shown in Table 1. Theth#cal value of the
rise in water level is the water level change oigdiby calculating the water level rise causedHgywolume of the
perturbed water column, while the experimental @atuthe numerical result of adapting the Chebyspectral method to
solve the flow field of the square pool with watelumn perturbation. The error is smaller thandhkeulation accuracy

taken as 5x10m, indicating the Chebyshev spectral method is ateuand useful in the water wave simulation.
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Figure 1: Velocity of the Water Wave in the Pool
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Figure 2: Level of the Water Wave in the Pool

Table 1: Average Water Level Rise and its Absolut&rror

CONCLUSIONS

In this paper, A matrix solution form of two-dimémsal tidal wave equations based on the Chebyshestal
method is presented. In the numerical solution ggecthe partial differential term on the spataiable is represented by
the Chebyshev differential matrix, and the partidderential time variable is treated by a leapgff@rmula. Taking a
square water column perturbation at the initiagstas a numerical experiment, the results abousithalation of water
wave are achieved, and the simulation results ansistent with the water wave diffusion law. TheeB¥yshev spectral

method provides a clear and simple matrix formanfamerical solving the two-dimensional water wageiations.
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